In the Distance Oracle problem, the goal is to preprocess $n$ vectors $x_1, x_2, \cdots, x_n$ in a $d$-dimensional metric space $(\mathbb{X}^d, \| \cdot \|_l)$ into a cheap data structure, so that given a query vector $q \in \mathbb{X}^d$ and a subset $S\subseteq [n]$ of the input data points, all distances $\| q - x_i \|_l$ for $x_i\in S$ can be quickly approximated (faster than the trivial $\sim d|S|$ query time). This primitive is a basic subroutine in machine learning, data mining and similarity search applications. In the case of $\ell_p$ norms, the problem is well understood, and optimal data structures are known for most values of $p$. Our main contribution is a fast $(1+\varepsilon)$ distance oracle for any symmetric norm $\|\cdot\|_l$. This class includes $\ell_p$ norms and Orlicz norms as special cases, as well as other norms used in practice, e.g. top-$k$ norms, max-mixture and sum-mixture of $\ell_p$ norms, small-support norms and the box-norm. We propose a novel data structure with $\tilde{O}(n (d + \mathrm{mmc}(l)^2 ) )$ preprocessing time and space, and $t_q = \tilde{O}(d + |S| \cdot \mathrm{mmc}(l)^2)$ query time, for computing distances to a subset $S$ of data points, where $\mathrm{mmc}(l)$ is a complexity-measure (concentration modulus) of the symmetric norm. When $l = \ell_{p}$ , this runtime matches the aforementioned state-of-art oracles.


翻译:在远程 Oracle 问题中, 目标是在一个廉价的数据结构中预处理 $x_ 1, x_ 2,\ cdots, x_n美元, 以美元维度度空间 $ (mathbb{X ⁇ d,\\ cdot\ ⁇ l) 美元, 因此如果是一个查询矢量 $q / in\ mathb{X ⁇ d$, 并有一个子值 $S\ subseq [n] 输入数据点, 所有的离量 $x% q - x_ i l$, 美元x_ i\ 美元, x_ lid, x_ d_ 美元, modral_ comm ral_ rotherral ral_ rudeal_ ral_ rmal_ $美元 。 问题被很好地理解, 我们的主要贡献是快速的 $( 1\ d\ d\ d\ darfsl) 美元 美元, lex_ drodudeal_ dal_ drodude, exal_ sal_ card=x_ a.

0
下载
关闭预览

相关内容

甲骨文公司,全称甲骨文股份有限公司(甲骨文软件系统有限公司),是全球最大的企业级软件公司,总部位于美国加利福尼亚州的红木滩。1989年正式进入中国市场。2013年,甲骨文已超越 IBM ,成为继 Microsoft 后全球第二大软件公司。
专知会员服务
17+阅读 · 2020年9月6日
专知会员服务
161+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年7月18日
Arxiv
0+阅读 · 2022年7月18日
Arxiv
0+阅读 · 2022年7月14日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员