Logistic linear mixed model (LLMM) is one of the most widely used statistical models. Generally, Markov chain Monte Carlo algorithms are used to explore the posterior densities associated with Bayesian LLMMs. Polson, Scott and Windle's (2013) Polya-Gamma data augmentation (DA) technique can be used to construct full Gibbs (FG) samplers for LLMMs. Here, we develop efficient block Gibbs (BG) samplers for Bayesian LLMMs using the P\'{o}lya-Gamma DA method. We compare the FG and BG samplers in the context of simulated and real data examples as the correlation between the fixed and random effects change as well as when the dimension of the design matrices varies. These numerical examples demonstrate superior performance of the BG samplers over the FG samplers. We also consider conditions guaranteeing geometric ergodicity of the BG Markov chain when an improper uniform prior is assigned on the regression coefficients and proper or improper priors are placed on the variance parameters of the random effects. This theoretical result has important practical implications, including honest statistical inference with valid Monte Carlo standard errors.
翻译:物流线性混合模型(LLMM)是最广泛使用的统计模型之一。 一般来说, Markov连锁Monte Carlo算法被用于探索与巴伊西亚LMMs有关的后方密度。 Polson、 Scott 和 Windle 的2013 Polya-Gamma 数据增强(DA)技术可用于为LMMMs建立完整的Gibbs(FG)取样器。 这里, 我们使用 P\' {o}lya- Gamma DA方法为巴伊萨LMs开发高效的 Gibs (BG) 取样器。 我们用模拟和真实的数据示例比较FG和BG样本, 以作为固定效应变化和随机效应变化的相关性,以及设计矩阵的不同层面。 这些数字示例显示了BG采样器对LMMs的优异性表现。 我们还考虑了在随机效应的差异参数上设定了不适当的或不适当的前置参数时, 保证BG Markov 链的地理测量灵异性的条件。 这一理论结果具有重要的实际影响, 包括诚实的统计错误, 和有效标准 。