High-throughput sequencing technology allows us to test the compositional difference of bacteria in different populations. One important feature of human microbiome data is that it often includes a large number of zeros. Such data can be treated as being generated from a two-part model that includes a zero point-mass. Motivated by analysis of such non-negative data with excessive zeros, we introduce several truncated rank-based two-group and multi-group tests for such data, including a truncated rank-based Wilcoxon rank-sum test for two-group comparison and two truncated Kruskal-Wallis tests for multi-group comparison. We show both analytically through asymptotic relative efficiency analysis and by simulations that the proposed tests have higher power than the standard rank-based tests, especially when the proportion of zeros in the data is high. The tests can also be applied to repeated measurements of compositional data via simple within-subject permutations. We apply the tests to the analysis of a gut microbiome data set to compare the microbiome compositions of healthy and pediatric Crohn's disease patients and to assess the treatment effects on microbiome compositions. We identify several bacterial genera that are missed by the standard rank-based tests.


翻译:高通量测序技术允许我们测试不同人群中细菌的构成差异。 人类微生物数据的一个重要特征是,它通常包含大量零。 这些数据可以被视为由包含零点质量的两部分模型生成。 我们借助于对此类无负值数据的分析,引入了数种基于等级等级的两组和多组的此类数据测试,包括用于两组比较的短分级级级威尔科松级和两次用于多组比较的粗略Kruskal-Wallis测试。我们通过无线相对效率分析和模拟,从分析角度显示拟议测试的功率高于标准等级测试,特别是当数据中零的比例很高时。这些测试还可以用于通过简单的本位定位定位定位定位定位测算对此类数据进行重复的测量。 我们将测试应用于用于对基于两组的直线微生物数据进行的分析,以比较健康微生物构成的微生物和小行星级定位的微生物构成。 我们通过模拟显示,我们所测测测测测测的几种的克罗氏级的微生物病和误测算结果。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Meta Learning for Causal Direction
Arxiv
5+阅读 · 2020年7月6日
Inferred successor maps for better transfer learning
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员