Decoupling spatiotemporal representation refers to decomposing the spatial and temporal features into dimension-independent factors. Although previous RGB-D-based motion recognition methods have achieved promising performance through the tightly coupled multi-modal spatiotemporal representation, they still suffer from (i) optimization difficulty under small data setting due to the tightly spatiotemporal-entangled modeling;(ii) information redundancy as it usually contains lots of marginal information that is weakly relevant to classification; and (iii) low interaction between multi-modal spatiotemporal information caused by insufficient late fusion. To alleviate these drawbacks, we propose to decouple and recouple spatiotemporal representation for RGB-D-based motion recognition. Specifically, we disentangle the task of learning spatiotemporal representation into 3 sub-tasks: (1) Learning high-quality and dimension independent features through a decoupled spatial and temporal modeling network. (2) Recoupling the decoupled representation to establish stronger space-time dependency. (3) Introducing a Cross-modal Adaptive Posterior Fusion (CAPF) mechanism to capture cross-modal spatiotemporal information from RGB-D data. Seamless combination of these novel designs forms a robust spatialtemporal representation and achieves better performance than state-of-the-art methods on four public motion datasets. Our code is available at https://github.com/damo-cv/MotionRGBD.
翻译:虽然先前的RGB-D基于运动识别方法通过紧密结合的多模式时空代表方法取得了有希望的成绩,但是它们仍然面临着以下困难:(一) 小型数据设置方面的最大困难,其原因是随机交织的建模过于紧凑;(二) 信息冗余,因为它通常包含许多与分类有关的边际信息;(三) 多模式的时空信息互动程度较低,而这种信息与时间不甚相关;(三) 多模式的时空信息互动程度较低,因为延迟融合不足,造成多模式的时空信息互动程度较低。为减轻这些退缩,我们提议在基于RGB-D的动作识别中进行双对调和对调双调的时空代表。具体地说,我们通过一个分解的空间和时间建模网络学习高品质和维度独立特征;(二) 将多模式的多模式代表结构重新组合起来,以建立更强的空间时代依赖性依赖性关系。 (3) 在跨模式的Podal-Dial-comsial Supal Supal Supal Stative developal developationsmmationsmmmmation-smission-suplation-