Unsourced random-access (U-RA) is a type of grant-free random access with a virtually unlimited number of users, of which only a certain number $K_a$ are active on the same time slot. Users employ exactly the same codebook, and the task of the receiver is to decode the list of transmitted messages. We present a concatenated coding construction for U-RA on the AWGN channel, in which a sparse regression code (SPARC) is used as an inner code to create an effective outer OR-channel. Then an outer code is used to resolve the multiple-access interference in the OR-MAC. We propose a modified version of the approximate message passing (AMP) algorithm as an inner decoder and give a precise asymptotic analysis of the error probabilities of the AMP decoder and of a hypothetical optimal inner MAP decoder. This analysis shows that the concatenated construction can achieve a vanishing per-user error probability in the limit of large blocklength and a large number of active users at sum-rates up to the symmetric Shannon capacity, i.e. as long as $K_aR < 0.5\log_2(1+K_a\SNR)$. This extends previous point-to-point optimality results about SPARCs to the unsourced multiuser scenario. Furthermore, we give an optimization algorithm to find the power allocation for the inner SPARC code that minimizes the required $\SNR$.


翻译:无源随机访问(U-RA)是一种无赠款随机访问(U-RA),用户数量几乎无限制,用户中只有一定数目的K_a美元在同一个时段活动。用户使用完全相同的代码簿,接收器的任务是解码传送信件列表。我们为AMP解码器解码器和假设的最佳内部 MAP解码器的错误概率,在AWGN 频道上为U-RA进行一个共包编码构建,其中稀释回归代码(SPRC)被用作内部代码,以创建有效的外部或通道。然后使用外部代码解决OR-MAC的多重访问干扰(其中只有一定数目的K_a$a$a)。我们建议修改大约的信息传递(AMP)算法版本,作为内部解码器,对AMP解码器的错误概率和假设的最佳内部解码解码器进行精确的解码分析。这个分析表明,在大块长度范围内,配置的用户的概率最小化概率(2)和大量活跃的用户在S-R_ral-ral Ral 的公式中,我们将S-i.S-xxxxxxxxxxx-laxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx。

0
下载
关闭预览

相关内容

【硬核书】树与网络上的概率,716页pdf
专知会员服务
74+阅读 · 2021年12月8日
中国无线经济白皮书,49页pdf
专知会员服务
16+阅读 · 2021年10月21日
专知会员服务
29+阅读 · 2021年8月2日
专知会员服务
61+阅读 · 2020年3月19日
专知会员服务
162+阅读 · 2020年1月16日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
开膛手约翰 - 密码破解者
黑白之道
8+阅读 · 2019年2月6日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Age of Information in Random Access Channels
Arxiv
0+阅读 · 2022年2月9日
Arxiv
0+阅读 · 2022年2月9日
Arxiv
0+阅读 · 2022年2月4日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关VIP内容
【硬核书】树与网络上的概率,716页pdf
专知会员服务
74+阅读 · 2021年12月8日
中国无线经济白皮书,49页pdf
专知会员服务
16+阅读 · 2021年10月21日
专知会员服务
29+阅读 · 2021年8月2日
专知会员服务
61+阅读 · 2020年3月19日
专知会员服务
162+阅读 · 2020年1月16日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
开膛手约翰 - 密码破解者
黑白之道
8+阅读 · 2019年2月6日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Age of Information in Random Access Channels
Arxiv
0+阅读 · 2022年2月9日
Arxiv
0+阅读 · 2022年2月9日
Arxiv
0+阅读 · 2022年2月4日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
3+阅读 · 2017年12月1日
Top
微信扫码咨询专知VIP会员