We show the existence of universal, variable-rate rate-distortion codes that meet the distortion constraint almost surely and approach the rate-distortion function uniformly with respect to an unknown source distribution and a distortion measure that is only revealed to the encoder and only at run-time. If the convergence only needs to be uniform with respect to the source distribution and not the distortion measure, then we provide an explicit bound on the minimax rate of convergence. Our construction combines conventional random coding with a zero-rate uncoded transmission scheme. The proof uses exact asymptotics from large deviations, acceptance-rejection sampling, the VC dimension of distortion measures, and the identification of an explicit, code-independent, finite-blocklength quantity, which converges to the rate-distortion function, that controls the performance of the best codes.
翻译:我们展示了符合扭曲限制的普遍、可变利率扭曲代码的存在,这些代码几乎可以肯定地满足了扭曲限制,并且在未知源分布和扭曲措施方面统一对待率扭曲功能,这种扭曲措施只向编码器披露,而且只在运行时才披露。如果趋同只需要在源分布而不是扭曲措施方面保持统一,那么我们就会对微缩汇合率作出明确的约束。我们的构造将常规随机编码与零率的未编码传输计划结合起来。 证据使用了从大偏差、接受-拒绝抽样、扭曲措施的VC层面以及确定一个明确、不受编码约束、有限区长数量(这与率扭曲功能一致)来控制最佳代码的性能。