Unsupervised anomaly detection models which are trained solely by healthy data, have gained importance in the recent years, as the annotation of medical data is a tedious task. Autoencoders and generative adversarial networks are the standard anomaly detection methods that are utilized to learn the data distribution. However, they fall short when it comes to inference and evaluation of the likelihood of test samples. We propose a novel combination of generative models and a probabilistic graphical model. After encoding image samples by autoencoders, the distribution of data is modeled by Random and Tensorized Sum-Product Networks ensuring exact and efficient inference at test time. We evaluate different autoencoder architectures in combination with Random and Tensorized Sum-Product Networks on mammography images using patch-wise processing and observe superior performance over utilizing the models standalone and state-of-the-art in anomaly detection for medical data.
翻译:近年来,完全由健康数据培训的未经监督的异常现象检测模型越来越重要,因为医疗数据说明是一项陈腐的任务。自动编码器和基因对抗网络是标准异常现象检测方法,用来学习数据分布。然而,当涉及推断和评价测试样品的可能性时,它们就显得不足。我们提议将基因模型和概率图形模型进行新型组合。在由自动编码器对图像样本进行编码后,数据传播由随机和天体化总和产品网络进行模拟,以确保测试时间准确和高效的推断。我们利用对称处理来评估与随机和天体化的乳房Xmom-Product网络相结合的对不同自动编码器结构进行评估,并观察在使用模型独立和最新技术对医疗数据进行异常检测方面的优异性表现。