One of the ways natural and synthetic systems regulate temperature is via circulating fluids through vasculatures embedded within their bodies. Because of the flexibility and availability of proven fabrication techniques, vascular-based thermal regulation is attractive for thin microvascular systems. Although preliminary designs and experiments demonstrate the feasibility of thermal modulation by pushing fluid through embedded micro-vasculatures, one has yet to optimize the performance before translating the concept into real-world applications. It will be beneficial to know how two vital design variables -- host material's thermal conductivity and fluid's heat capacity rate -- affect a thermal regulation system's performance, quantified in terms of the mean surface temperature. This paper fills the remarked inadequacy by performing adjoint-based sensitivity analysis and unravels a surprising non-monotonic trend. Increasing thermal conductivity can either increase or decrease the mean surface temperature; the increase happens if countercurrent heat exchange -- transfer of heat from one segment of the vasculature to another -- is significant. In contrast, increasing the heat capacity rate will invariably lower the mean surface temperature, for which we provide mathematical proof. The reported results (a) dispose of some misunderstandings in the literature, especially on the effect of the host material's thermal conductivity, (b) reveal the role of countercurrent heat exchange in altering the effects of design variables, and (c) guide designers to realize efficient microvascular active-cooling systems. The analysis and findings will advance the field of thermal regulation both on theoretical and practical fronts.
翻译:自然和合成系统调节温度的方法之一,是自然和合成系统调节温度的方法之一。自然和合成系统调节温度的方法之一,是通过其体内的血管变流流流体。由于经证明的制造技术的灵活性和可用性,血管基热调节对薄微血管系统具有吸引力。虽然初步设计和实验表明通过嵌入微血管推进液体进行热调节的可行性,但在将概念转换成真实世界应用之前,尚未优化性能。了解两个重要设计变量 -- -- 宿主材料的热导能和流体热能力 -- -- 如何影响热调节系统以平均表面温度量化的性能。本文通过进行基于联合的灵敏度分析和揭示出一个令人惊讶的非热调节趋势,填补了上述的不足。提高热导能性可以提高或降低平均表面温度温度;如果逆向热交换 -- -- 从血管的一个部分向另一个部分转移热转换到另一个部分 -- -- 就会增加性能。相比之下,提高热导能率必然会降低平均表面温度,对此我们提供数学证据。所报的实地分析结果(a) 热导中的一些热导结果,尤其是对热导结果的正确判断,以及分析结果的正确判断结果的判断结果,将产生。</s>