Inspired by Manjul Bhargava's theory of generalized factorials, Fedor Petrov and the author have defined the "Bhargava greedoid" -- a greedoid (a matroid-like set system on a finite set) assigned to any "ultra triple" (a somewhat extended variant of a finite ultrametric space). Here we show that the Bhargava greedoid of a finite ultra triple is always a "Gaussian elimination greedoid" over any sufficiently large (e.g., infinite) field; this is a greedoid analogue of a representable matroid. We find necessary and sufficient conditions on the size of the field to ensure this.
翻译:在Manjul Bhargava关于普遍因素学理论的启发下,Fedor Petrov和作者界定了“Bhargava贪婪物”——一种被指定用于任何“超三重”的贪婪物(一个定数定数的像机器人的定数系统)(一个有限的超度空间的某种扩展变体)。这里我们表明,一个定数超三倍的Bhargava贪婪物始终是“消除古西人的贪婪物”,高于任何足够大的(例如无限的)领域;这是一个可代表的类比。我们发现在田面积上存在必要和充分的条件以确保这一点。