Object detection algorithms particularly those based on YOLO have demonstrated remarkable efficiency in balancing speed and accuracy. However, their application in brain tumour detection remains underexplored. This study proposes RepVGG-GELAN, a novel YOLO architecture enhanced with RepVGG, a reparameterized convolutional approach for object detection tasks particularly focusing on brain tumour detection within medical images. RepVGG-GELAN leverages the RepVGG architecture to improve both speed and accuracy in detecting brain tumours. Integrating RepVGG into the YOLO framework aims to achieve a balance between computational efficiency and detection performance. This study includes a spatial pyramid pooling-based Generalized Efficient Layer Aggregation Network (GELAN) architecture which further enhances the capability of RepVGG. Experimental evaluation conducted on a brain tumour dataset demonstrates the effectiveness of RepVGG-GELAN surpassing existing RCS-YOLO in terms of precision and speed. Specifically, RepVGG-GELAN achieves an increased precision of 4.91% and an increased AP50 of 2.54% over the latest existing approach while operating at 240.7 GFLOPs. The proposed RepVGG-GELAN with GELAN architecture presents promising results establishing itself as a state-of-the-art solution for accurate and efficient brain tumour detection in medical images. The implementation code is publicly available at https://github.com/ThensiB/RepVGG-GELAN.
翻译:暂无翻译