With the steady progress in quantum computing over recent years, roadmaps for upscaling quantum processors have relied heavily on the targeted qubit architectures. So far, similarly to the early age of classical computing, these designs have been crafted by human experts. These general-purpose architectures, however, leave room for customization and optimization, especially when targeting popular near-term QC applications. In classical computing, customized architectures have demonstrated significant performance and energy efficiency gains over general-purpose counterparts. In this paper, we present a framework for optimizing quantum architectures, specifically through customizing qubit connectivity. It is the first work that (1) provides performance guarantees by integrating architecture optimization with an optimal compiler, (2) evaluates the impact of connectivity customization under a realistic crosstalk error model, and (3) benchmarks on realistic circuits of near-term interest, such as the quantum approximate optimization algorithm (QAOA) and quantum convolutional neural network (QCNN). We demonstrate up to 59% fidelity improvement in simulation by optimizing the heavy-hexagon architecture for QAOA circuits, and up to 14% improvement on the grid architecture. For the QCNN circuit, architecture optimization improves fidelity by 11% on the heavy-hexagon architecture and 605% on the grid architecture.


翻译:随着近年来在量子计算方面的稳步进展,升级量子处理器的路线图在很大程度上依赖目标的qubit结构。迄今为止,与古典计算早期的早期一样,这些设计由人类专家设计。然而,这些通用结构为定制和优化留出了空间,特别是在针对受欢迎的近期QC应用程序时。在传统计算中,定制结构展示了与普通用途对应方相比的显著性能和能效收益。在本文中,我们提出了一个优化量子结构的框架,特别是通过定制qubit连通性。这是第一项工作:(1)通过将结构优化与最佳编译器相结合,提供性能保障,(2)根据现实的交叉跟踪错误模式评估连接定制的影响,(3)对现实的近期利益电路进行基准,例如量近效优化算法(QAOA)和量子革命神经网络(QCNN)。我们通过优化QAOA电路路段的重六边结构,以及将重电网结构改进到14 % 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Towards Quantum Advantage on Noisy Quantum Computers
Arxiv
0+阅读 · 2022年9月27日
Arxiv
0+阅读 · 2022年9月24日
Arxiv
0+阅读 · 2022年9月23日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
19+阅读 · 2018年10月25日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员