Socio-economic characteristics are influencing the temporal and spatial variability of water demand - the biggest source of uncertainties within water distribution system modeling. Improving our knowledge on these influences can be utilized to decrease demand uncertainties. This paper aims to link smart water meter data to socio-economic user characteristics by applying a novel clustering algorithm that uses dynamic time warping on daily demand patterns. The approach is tested on simulated and measured single family home datasets. We show that the novel algorithm performs better compared to commonly used clustering methods, both, in finding the right number of clusters as well as assigning patterns correctly. Additionally, the methodology can be used to identify outliers within clusters of demand patterns. Furthermore, this study investigates which socio-economic characteristics (e.g. employment status, number of residents) are prevalent within single clusters and, consequently, can be linked to the shape of the cluster's barycenters. In future, the proposed methods in combination with stochastic demand models can be used to fill data-gaps in hydraulic models.
翻译:社会经济特征正在影响水需求的时间和空间变化,水分配系统模型中最大的不确定因素是水需求的时间和空间变异性。改进我们对这些影响的知识可以用来减少需求不确定性。本文件的目的是通过应用对日常需求模式使用动态时间扭曲的新型集群算法,将智能水计量数据与社会经济用户特征联系起来。该方法在模拟和测量的单一家庭数据集中测试。我们显示,与常用的集群方法相比,新式算法表现得更好,在寻找正确的集群数和正确分配模式方面都是如此。此外,该方法可用于查明需求模式组合中的外部值。此外,本研究还调查了哪些社会经济特征(如就业状况、居民人数)在单一集群中普遍存在,因此,可以与集集的干燥器形状相联系。今后,与随机需求模型相结合的拟议方法可以用来填补液压模型中的数据差距。