Time-sensitive networks (IEEE TSN or IETF DetNet) may tolerate some packet reordering. Re-sequencing buffers are then used to provide in-order delivery, the parameters of which (timeout, buffer size) may affect worst-case delay and delay jitter. There is so far no precise understanding of per-flow reordering metrics nor of the dimensioning of re-sequencing buffers in order to provide worst-case guarantees, as required in such networks. First, we show that a previously proposed per-flow metric, reordering late time offset (RTO), determines the timeout value. If the network is lossless, another previously defined metric, the reordering byte offset (RBO), determines the required buffer. If packet losses cannot be ignored, the required buffer may be larger than RBO, and depends on jitter, an arrival curve of the flow at its source, and the timeout. Then we develop a calculus to compute the RTO for a flow path; the method uses a novel relation with jitter and arrival curve, together with a decomposition of the path into non order-preserving and order-preserving elements. We also analyse the effect of re-sequencing buffers on worst-case delay, jitter and propagation of arrival curves. We show in particular that, in a lossless (but non order-preserving) network, re-sequencing is "for free", namely, it does not increase worst-case delay nor jitter, whereas in a lossy network, re-sequencing increases the worst-case delay and jitter. We apply the analysis to evaluate the performance impact of placing re-sequencing buffers at intermediate points and illustrate the results on two industrial test cases.


翻译:时间敏感的网络( IEEE TSN 或 IETF DetNet ) 可能容忍某些组合重新排序。 然后,将顺序顺序的缓冲用于提供顺序内交付, 其参数( 超时、 缓冲大小) 可能会影响最坏的延误和延迟的快感。 目前还无法准确理解每流量重新排序指标, 也没有确切了解重新排序的缓冲的尺寸, 以提供最坏的保证, 正如这类网络所要求的那样。 首先, 我们显示, 先前提议的循环指标, 重新排序晚时间抵消( RTO) 将决定超时值。 如果网络无损失, 先前定义的另一种度, 重新排序( RBO ) 则决定所需的缓冲。 如果无法忽略, 所需的缓冲幅度可能大于 RBO, 取决于流源头的进缩缩缩曲线, 以及超时速。 然后我们开发一个缩放 RTO 路径的缩略图, 在最坏的运行和抵达曲线上使用一种新型的关系, 与不易变速的缓变速的缓冲,, 同时, 将最坏的网络的变速的变速的变速分析会显示到非顺序。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
3+阅读 · 2018年10月25日
LARNN: Linear Attention Recurrent Neural Network
Arxiv
5+阅读 · 2018年8月16日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员