We present a correlated \textit{and} gate which may be used to propagate uncertainty and dependence through Boolean functions, since any Boolean function may be expressed as a combination of \textit{and} and \textit{not} operations. We argue that the \textit{and} gate is a bivariate copula family, which has the interpretation of constructing bivariate Bernoulli random variables following a given Pearson correlation coefficient and marginal probabilities. We show how this copula family may be used to propagate uncertainty in the form of probabilities of events, probability intervals, and probability boxes, with only partial or no knowledge of the dependency between events, expressed as an interval for the correlation coefficient. These results generalise previous results by Fr\'echet on the conjunction of two events with unknown dependencies. We show an application propagating uncertainty through a fault tree for a pressure tank. This paper comes with an open-source Julia library for performing uncertainty logic.
翻译:我们提出了一个相关\ textit{ 和} 门, 可用于通过 Boolean 函数传播不确定性和依赖性, 因为任何布尔函数都可以以\ textit{ 和} 和\ textit{ non} 操作的组合来表达。 我们争论道, 大门是一个双变量的组合, 其解释是根据给定的 Pearson 相关系数和边缘概率来构建双变量 Bernoulli 随机变量。 我们展示了如何利用此千叶家族来传播不确定性, 其形式为事件概率、 概率间隔和概率框, 只能部分或完全不知道事件之间的依赖性, 以相关系数的间隔来表达。 这些结果概括了Fr\' echchect 先前对两个事件结合的结果, 其依赖性不明。 我们展示了一种应用, 通过压力罐的断层树来推动不确定性。 此纸带有用于执行不确定性逻辑的开放源 Julia 图书馆 。