We introduce a generalization of the bisimulation game that finds distinguishing Hennessy--Milner logic formulas from every finitary, subformula-closed language in van Glabbeek's linear-time--branching-time spectrum between two finite-state processes. We identify the relevant dimensions that measure expressive power to yield formulas belonging to the coarsest distinguishing behavioral preorders and equivalences; the compared processes are equivalent in each coarser behavioral equivalence from the spectrum. We prove that the induced algorithm can determine the best fit of (in)equivalences for a pair of processes.
翻译:我们引入了闪烁游戏的概括化, 发现Van Glabbeek两个有限状态进程之间线性时间- 时间- 支架频谱中的每一种直线- 时间- 支架频谱中, 将Hennnesy- Milner逻辑公式与每个直线- 亚公式- 闭合语言区分开来。 我们确定了测量表达力的相关维度, 以生成属于最粗粗的区分行为前序和等值的公式; 比较过程相当于各谱中每个粗均匀的行为等值。 我们证明导引算算算法可以决定对一进程的最佳匹配性( int) 等值 。