We present a new architecture for human action forecasting from videos. A temporal recurrent encoder captures temporal information of input videos while a self-attention model is used to attend on relevant feature dimensions of the input space. To handle temporal variations in observed video data, a feature masking techniques is employed. We classify observed actions accurately using an auxiliary classifier which helps to understand what has happened so far. Then the decoder generates actions for the future based on the output of the recurrent encoder and the self-attention model. Experimentally, we validate each component of our architecture where we see that the impact of self-attention to identify relevant feature dimensions, temporal masking, and observed auxiliary classifier. We evaluate our method on two standard action forecasting benchmarks and obtain state-of-the-art results.


翻译:我们从视频中展示了人类行动预测的新架构。 时间性经常性编码器捕捉输入视频的时间信息, 而同时使用一个自我注意模型来关注输入空间的相关特征层面。 为了处理观测到的视频数据的时间变化, 我们采用了一种特征掩码技术。 我们使用辅助分类器对观测到的行动进行了准确分类, 这有助于了解迄今为止发生的情况。 然后, 解码器根据经常性编码器和自留模型的输出为未来生成行动。 实验性地, 我们验证了我们架构的每个组成部分, 在那里我们看到了自我注意对确定相关特征层面的影响, 时间掩码和观察辅助分类器。 我们用两个标准行动预测基准评估了我们的方法, 并获得了最新的结果 。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
Transformer模型-深度学习自然语言处理,17页ppt
专知会员服务
102+阅读 · 2020年8月30日
最新《生成式对抗网络》简介,25页ppt
专知会员服务
173+阅读 · 2020年6月28日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
LibRec 精选:EfficientNet、XLNet 论文及代码实现
LibRec智能推荐
5+阅读 · 2019年7月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年9月21日
Arxiv
0+阅读 · 2021年9月20日
Raising context awareness in motion forecasting
Arxiv
0+阅读 · 2021年9月16日
Arxiv
15+阅读 · 2021年2月19日
Arxiv
35+阅读 · 2021年1月27日
Arxiv
5+阅读 · 2017年9月8日
VIP会员
相关VIP内容
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
Transformer模型-深度学习自然语言处理,17页ppt
专知会员服务
102+阅读 · 2020年8月30日
最新《生成式对抗网络》简介,25页ppt
专知会员服务
173+阅读 · 2020年6月28日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
LibRec 精选:EfficientNet、XLNet 论文及代码实现
LibRec智能推荐
5+阅读 · 2019年7月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员