Nowadays, how to effectively evaluate visual properties has become a popular topic for fine-grained visual comprehension. In this paper we study the problem of how to estimate such visual properties from a ranking perspective with the help of the annotators from online crowdsourcing platforms. The main challenges of our task are two-fold. On one hand, the annotations often contain contaminated information, where a small fraction of label flips might ruin the global ranking of the whole dataset. On the other hand, considering the large data capacity, the annotations are often far from being complete. What is worse, there might even exist imbalanced annotations where a small subset of samples are frequently annotated. Facing such challenges, we propose a robust ranking framework based on the principle of Hodge decomposition of imbalanced and incomplete ranking data. According to the HodgeRank theory, we find that the major source of the contamination comes from the cyclic ranking component of the Hodge decomposition. This leads us to an outlier detection formulation as sparse approximations of the cyclic ranking projection. Taking a step further, it facilitates a novel outlier detection model as Huber's LASSO in robust statistics. Moreover, simple yet scalable algorithms are developed based on Linearized Bregman Iteration to achieve an even less biased estimator. Statistical consistency of outlier detection is established in both cases under nearly the same conditions. Our studies are supported by experiments with both simulated examples and real-world data. The proposed framework provides us a promising tool for robust ranking with large scale crowdsourcing data arising from computer vision.


翻译:目前,如何有效评估视觉属性已成为人们广泛关注的精细视觉理解主题。 在本文中,我们研究如何在在线众包平台的批注员的帮助下,从排名角度来估计这些视觉属性的问题。 我们的主要任务有双重挑战。 一方面, 说明往往包含受污染的信息, 标签翻转的一小部分可能会破坏整个数据集的全球排名。 另一方面, 考虑到数据容量巨大, 说明往往远没有完成。 更糟糕的是, 甚至可能存在不平衡的注释, 其中少量样本经常被附加注释。 面对这些挑战, 我们提议了一个基于 Hodge 分解不平衡和不完整排名数据原则的强势排序框架。 根据 Hodge Rank 理论, 我们发现, 一小部分标签翻转可能会破坏整个数据集的全球排名。 考虑到庞大的数据能力, 说明往往远远没有完成。 更进一步, 更进一步, 更进一步, 更进一步, 我们的超值检测模型以HOBSO为主, 提供更小的精确的准确度, 并且根据HLASO进行更小的测算。

1
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
61+阅读 · 2020年3月4日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
知识图谱本体结构构建论文合集
专知会员服务
106+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
已删除
将门创投
3+阅读 · 2017年11月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月11日
Arxiv
9+阅读 · 2018年5月22日
Arxiv
6+阅读 · 2018年3月28日
Arxiv
5+阅读 · 2018年3月16日
Arxiv
6+阅读 · 2018年2月8日
Arxiv
9+阅读 · 2016年10月27日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
61+阅读 · 2020年3月4日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
知识图谱本体结构构建论文合集
专知会员服务
106+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
已删除
将门创投
3+阅读 · 2017年11月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员