We propose an uncertainty-aware service approach to provide drone-based delivery services called Drone-as-a-Service (DaaS) effectively. Specifically, we propose a service model of DaaS based on the dynamic spatiotemporal features of drones and their in-flight contexts. The proposed DaaS service approach consists of three components: scheduling, route-planning, and composition. First, we develop a DaaS scheduling model to generate DaaS itineraries through a Skyway network. Second, we propose an uncertainty-aware DaaS route-planning algorithm that selects the optimal Skyways under weather uncertainties. Third, we develop two DaaS composition techniques to select an optimal DaaS composition at each station of the planned route. A spatiotemporal DaaS composer first selects the optimal DaaSs based on their spatiotemporal availability and drone capabilities. A predictive DaaS composer then utilises the outcome of the first composer to enable fast and accurate DaaS composition using several Machine Learning classification methods. We train the classifiers using a new set of spatiotemporal features which are in addition to other DaaS QoS properties. Our experiments results show the effectiveness and efficiency of the proposed approach.
翻译:我们提出了一种有不确定性的服务方法,以有效提供无人机交付服务。 我们建议了一种称为Daas-service(DaaS)的基于不确定性的服务方法。 具体地说, 我们建议了一种基于无人机及其飞行环境动态空间特征的DaaS服务模式。 提议的DaaS服务方法由三个部分组成: 时间安排、 路线规划和组成。 首先, 我们开发了DaaS调度调度调度模式, 以便通过Skyway网络生成DaaS的行程。 其次, 我们提出了一种具有不确定性的DaAS路程规划算法, 以选择天气不确定性情况下的最佳天道。 第三, 我们开发了两种DaAS构成技术, 以便在计划路线的每个站选择一种最优化的DaaS构成。 一个“ 达aAS” composer首先根据空间多时空可用性和无人机能力来选择最佳的Daass。 一个预测的Daas composorationer, 然后利用第一个配置器的结果, 以便利用几种机器学习分类方法, 使Daas-S构成能够快速和精确地进行。 我们的高级实验的特性测试, 我们用新的一套效率方法对其他的特性进行了培训。