In recent work, Lissovoi, Oliveto, and Warwicker (Artificial Intelligence (2023)) proved that the Move Acceptance Hyper-Heuristic (MAHH) leaves the local optimum of the multimodal cliff benchmark with remarkable efficiency. With its $O(n^3)$ runtime, for almost all cliff widths $d,$ the MAHH massively outperforms the $\Theta(n^d)$ runtime of simple elitist evolutionary algorithms (EAs). For the most prominent multimodal benchmark, the jump functions, the given runtime estimates of $O(n^{2m} m^{-\Theta(m)})$ and $\Omega(2^{\Omega(m)})$, for gap size $m \ge 2$, are far apart and the real performance of MAHH is still an open question. In this work, we resolve this question. We prove that for any choice of the MAHH selection parameter~$p$, the expected runtime of the MAHH on a jump function with gap size $m = o(n^{1/2})$ is at least $\Omega(n^{2m-1} / (2m-1)!)$. This renders the MAHH much slower than simple elitist evolutionary algorithms with their typical $O(n^m)$ runtime. We also show that the MAHH with the global bit-wise mutation operator instead of the local one-bit operator optimizes jump functions in time $O(\min\{m n^m,\frac{n^{2m-1}}{m!\Omega(m)^{m-2}}\})$, essentially the minimum of the optimization times of the $(1+1)$ EA and the MAHH. This suggests that combining several ways to cope with local optima can be a fruitful approach.


翻译:在最近的研究中,Lissovoi、Oliveto和Warwicker(人工智能(2023))证明了移动接受超级启发式算法(MAHH)在多峰悬崖基准测试的局部最优点上表现出卓越的效率。随着其$O(n^3)$的运行时间,对于几乎所有的悬崖宽度$d$,MAHH大大优于简单的精英进化算法(EAs)的$\Theta(n^d)$运行时间。对于最突出的多峰基准测试——跳跃函数,给定的运行时间估计为$O(n^{2m} m^{-\Theta(m)})$和$\Omega(2^{\Omega(m)})$,对于间隙大小$m\ge 2$,两者差距很大,MAHH的实际表现仍是一个未解决的问题。在这项工作中,我们解决了这个问题。我们证明了对于MAHH选择参数$p$的任何选择,跳跃函数与间隙大小$m = o(n^{1/2})$的MAHH的预期运行时间至少为$\Omega(n^{2m-1}/(2m-1)!)$。这使得MAHH比简单的精英进化算法在典型的$O(n^m)$运行时间方面要慢得多。我们还展示了使用全局位运算突变算子而非局部一位算子的MAHH可以在时间$O(\min\{mn^m,\frac{n^{2m-1}}{m!\Omega(m)^{m-2}}\})$中优化跳跃函数,这本质上是$(1+1)$EA和MAHH的最小优化时间的最小值。这表明,结合几种应对局部最优点的方法可能是一种富有成效的方法。

0
下载
关闭预览

相关内容

局部最优,是指对于一个问题的解在一定范围或区域内最优,或者说解决问题或达成目标的手段在一定范围或限制内最优。在应用数学和计算机科学中,优化问题的局部最优是在候选解决方案的相邻集合内最优(最大或最小)的解决方案。 这与全局最优相反,后者是所有可能的解决方案中的最优解决方案,而不仅仅是在特定值附近的最优解决方案。
专知会员服务
27+阅读 · 2021年7月11日
专知会员服务
17+阅读 · 2020年12月4日
【Uber AI新论文】持续元学习,Learning to Continually Learn
专知会员服务
37+阅读 · 2020年2月27日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
An Alternate Proof of Near-Optimal Light Spanners
Arxiv
0+阅读 · 2023年6月4日
Arxiv
10+阅读 · 2021年11月3日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员