Many research works focus on leveraging the complementary geometric information of indoor depth sensors in vision tasks performed by deep convolutional neural networks, notably semantic segmentation. These works deal with a specific vision task known as "RGB-D Indoor Semantic Segmentation". The challenges and resulting solutions of this task differ from its standard RGB counterpart. This results in a new active research topic. The objective of this paper is to introduce the field of Deep Convolutional Neural Networks for RGB-D Indoor Semantic Segmentation. This review presents the most popular public datasets, proposes a categorization of the strategies employed by recent contributions, evaluates the performance of the current state-of-the-art, and discusses the remaining challenges and promising directions for future works.
翻译:许多研究工作的重点是利用室内深层神经网络所执行的视觉任务,特别是语义分割,利用室内深层传感器的辅助几何信息。这些研究涉及被称为“RGB-D室内语义分割”的具体远景任务。这项任务的挑战和由此产生的解决办法不同于标准RGB。这产生了一个新的积极研究专题。本文件的目的是介绍深层革命神经网络领域,用于室内语义分割。本审查介绍了最受欢迎的公共数据集,建议了最近投入使用的战略分类,评估了当前最新技术的绩效,并讨论了未来工作的剩余挑战和前景。