Magnetic resonance imaging (MRI) offers the flexibility to image a given anatomic volume under a multitude of tissue contrasts. Yet, scan time considerations put stringent limits on the quality and diversity of MRI data. The gold-standard approach to alleviate this limitation is to recover high-quality images from data undersampled across various dimensions such as the Fourier domain or contrast sets. A central divide among recovery methods is whether the anatomy is processed per volume or per cross-section. Volumetric models offer enhanced capture of global contextual information, but they can suffer from suboptimal learning due to elevated model complexity. Cross-sectional models with lower complexity offer improved learning behavior, yet they ignore contextual information across the longitudinal dimension of the volume. Here, we introduce a novel data-efficient progressively volumetrized generative model (ProvoGAN) that decomposes complex volumetric image recovery tasks into a series of simpler cross-sectional tasks across individual rectilinear dimensions. ProvoGAN effectively captures global context and recovers fine-structural details across all dimensions, while maintaining low model complexity and data-efficiency advantages of cross-sectional models. Comprehensive demonstrations on mainstream MRI reconstruction and synthesis tasks show that ProvoGAN yields superior performance to state-of-the-art volumetric and cross-sectional models.
翻译:磁共振成像(MRI)提供了在多种组织对比下想象某原子体积的灵活性。然而,扫描时间的考虑对磁共振数据的质量和多样性规定了严格的限制。降低这一限制的金标准方法是从诸如Fourier域或对比集等不同维度下采集的数据中恢复高品质图像。恢复方法之间的一个中心鸿沟是解析体解剖体体体量或跨截面的处理。量体模型提供了全球背景信息的强化捕捉,但由于模型复杂性的提高,它们可能受到非最佳学习的影响。复杂程度较低的跨部门模型提供了更好的学习行为,但它们忽视了该卷的纵向层面的背景信息。在这里,我们引入了一种新的数据高效的、逐步量化的基因化模型(ProvoGAN),将复杂的体积图像恢复任务分解成一系列简单的跨直线维度的跨部门任务。ProvoGAN有效捕捉了全球背景,并恢复了所有层面的微结构细节,同时保持了低度复杂度和数据效率的跨面结构模型的跨面结构,同时保持了模型的复杂度和高压的跨面模型,并展示了跨面模型。