Rapid developments in streaming data technologies are continuing to generate increased interest in monitoring human activity. Wearable devices, such as wrist-worn sensors that monitor gross motor activity (actigraphy), have become prevalent. An actigraph unit continually records the activity level of an individual, producing a very large amount of data at a high-resolution that can be immediately downloaded and analyzed. While this kind of \textit{big data} includes both spatial and temporal information, the variation in such data seems to be more appropriately modeled by considering stochastic evolution through time while accounting for spatial information separately. We propose a comprehensive Bayesian hierarchical modeling and inferential framework for actigraphy data reckoning with the massive sizes of such databases while attempting to offer full inference. Building upon recent developments in this field, we construct Nearest Neighbour Gaussian Processes (NNGPs) for actigraphy data to compute at large temporal scales. More specifically, we construct a temporal NNGP and we focus on the optimized implementation of the collapsed algorithm in this specific context. This approach permits improved model scaling while also offering full inference. We test and validate our methods on simulated data and subsequently apply and verify their predictive ability on an original dataset concerning a health study conducted by the Fielding School of Public Health of the University of California, Los Angeles.


翻译:数据流技术的迅速发展正在继续促使人们更加关注监测人类活动。穿戴装置,例如手腕式传感器,监测运动总活动(活动法),已经变得很普遍。一个活体单位不断记录一个人的活动水平,以高分辨率制作大量数据,可以立即下载和分析。虽然这类数据包括空间和时间信息,但这些数据的变异似乎通过考虑通过时间的随机演化和单独核算空间信息来进行更适当的模型化。我们提议采用一个全面的贝耶斯分层建模和推断框架,用于根据此类数据库的庞大规模来计算活动数据,同时试图提供全面的推断。根据该领域的最新发展情况,我们建造了近邻高斯进程,用于在大时间尺度上进行测算。更具体地,我们设计了一个时间性NGP,我们注重在这一具体背景下优化地实施崩溃算法。我们采用这一方法可以改进模型的缩放,同时提供对学校健康状况的原始数据进行完全的模拟。我们随后进行的实地测试和实地研究,对大学健康状况进行了实地数据研究。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
84+阅读 · 2020年12月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
119+阅读 · 2019年12月9日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年3月14日
Semantics of Data Mining Services in Cloud Computing
Arxiv
4+阅读 · 2018年10月5日
VIP会员
相关VIP内容
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员