This paper makes progress towards learning Nash equilibria in two-player zero-sum Markov games from offline data. Specifically, consider a $\gamma$-discounted infinite-horizon Markov game with $S$ states, where the max-player has $A$ actions and the min-player has $B$ actions. We propose a pessimistic model-based algorithm with Bernstein-style lower confidence bounds -- called VI-LCB-Game -- that provably finds an $\varepsilon$-approximate Nash equilibrium with a sample complexity no larger than $\frac{C_{\mathsf{clipped}}^{\star}S(A+B)}{(1-\gamma)^{3}\varepsilon^{2}}$ (up to some log factor). Here, $C_{\mathsf{clipped}}^{\star}$ is some unilateral clipped concentrability coefficient that reflects the coverage and distribution shift of the available data (vis-\`a-vis the target data), and the target accuracy $\varepsilon$ can be any value within $\big(0,\frac{1}{1-\gamma}\big]$. Our sample complexity bound strengthens prior art by a factor of $\min\{A,B\}$, achieving minimax optimality for the entire $\varepsilon$-range. An appealing feature of our result lies in algorithmic simplicity, which reveals the unnecessity of variance reduction and sample splitting in achieving sample optimality.


翻译:本文在从离线数据中学习 Nash 零和 Markov 双玩游戏中的 Nash 等离线 数据 中的进展。 具体地说, 考虑一个 $\ gamma $- 折现的无限horizon Markov 游戏, $S$, 最大玩家有 $A 动作, 分钟玩家有 $B$ 动作 。 我们建议用 Bernstein 风格的低信任范围( 称为 VI- LCB- Game ) 进行基于悲观模型的算法。 它可以找到一个 $\ varepsilon- 近于 Nash 平衡, 样本复杂程度不超过$( $- Cámfsl) ; 目标精度( 1- g- g- gstar} S&S& S ( A+B) +B +_\ +\ +\ +\ ralisality rality $_ a train exlievationslationslationslation_ a liver lievleglemental_ a exlation_ exlation_ a broup exlation_ a exlation_ exlation_ exlation exlation exlup 美元) exlup exlup__ exlationslup__ exlation_ 美元, exluplationslationslation_ 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元=_ rublation 美元, 美元= 美元= a 美元=__ 美元, 美元= a 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元= a 美元= a 美元, ruislupluplupl= a 美元, ruislislation_ 美元, 美元, 美元, rulation_ rulislislislislislislationalislation 美元, ruislation 美元, 可以提高

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年7月25日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员