In sequential recommender system applications, it is important to develop models that can capture users' evolving interest over time to successfully recommend future items that they are likely to interact with. For users with long histories, typical models based on recurrent neural networks tend to forget important items in the distant past. Recent works have shown that storing a small sketch of past items can improve sequential recommendation tasks. However, these works all rely on static sketching policies, i.e., heuristics to select items to keep in the sketch, which are not necessarily optimal and cannot improve over time with more training data. In this paper, we propose a differentiable policy for sketching (DiPS), a framework that learns a data-driven sketching policy in an end-to-end manner together with the recommender system model to explicitly maximize recommendation quality in the future. We also propose an approximate estimator of the gradient for optimizing the sketching algorithm parameters that is computationally efficient. We verify the effectiveness of DiPS on real-world datasets under various practical settings and show that it requires up to $50\%$ fewer sketch items to reach the same predictive quality than existing sketching policies.
翻译:在相继推荐系统应用中,重要的是要开发能够捕捉用户兴趣不断演变的模型,以便成功地推荐他们可能与之互动的未来项目。对于历史悠久的用户来说,基于经常神经网络的典型模型往往会忘记遥远的过去的重要项目。最近的工作表明,储存过去项目的小草图可以改进顺序推荐任务。然而,所有这些工作都依赖于静态的草图政策,即选择要保留在草图中的项目,这些项目不一定是最佳的,而且不能随着时间的变化而随着更多的培训数据而改善。在本文中,我们提出了一个不同的草图政策(DIPS),这个框架以端到端的方式学习以数据驱动的草图政策,同时学习推荐系统模型,以明确实现未来建议质量的最大化。我们还提出了一个梯度估计器,以优化计算效率的草图参数。我们在各种实际环境中核实DPS对真实世界数据集的有效性,并表明它需要比现有的草图政策低50美元,以达到同样的预测质量。