Label distributions in real-world are oftentimes long-tailed and imbalanced, resulting in biased models towards dominant labels. While long-tailed recognition has been extensively studied for image classification tasks, limited effort has been made for video domain. In this paper, we introduce VideoLT, a large-scale long-tailed video recognition dataset, as a step toward real-world video recognition. Our VideoLT contains 256,218 untrimmed videos, annotated into 1,004 classes with a long-tailed distribution. Through extensive studies, we demonstrate that state-of-the-art methods used for long-tailed image recognition do not perform well in the video domain due to the additional temporal dimension in video data. This motivates us to propose FrameStack, a simple yet effective method for long-tailed video recognition task. In particular, FrameStack performs sampling at the frame-level in order to balance class distributions, and the sampling ratio is dynamically determined using knowledge derived from the network during training. Experimental results demonstrate that FrameStack can improve classification performance without sacrificing overall accuracy. Code and dataset are available at: https://github.com/17Skye17/VideoLT.


翻译:真实世界的标签分布往往是长尾和不平衡的,导致对主要标签的偏差模型。虽然对图像分类任务进行了广泛研究,对长尾识别进行了广泛研究,但对视频域却作了有限的努力。在本文中,我们引入了视频LT,这是一个大型长尾视频识别数据集,这是向真实世界视频识别迈出的一步。我们的视频LT包含256 218个未剪辑的视频,附加说明,进入长尾分布的1 004个班级。通过广泛的研究,我们证明用于长尾图像识别的最先进方法在视频域内效果不佳,因为视频数据中增加了时间层面。这促使我们提出FrametStack,这是长尾视频识别任务的一个简单而有效的方法。特别是,框架Stack在框架一级进行取样,以平衡类分布,抽样比率是利用培训期间从网络获得的知识动态地决定的。实验结果表明,框架Stack可以在不牺牲总体准确性的情况下改进分类性业绩。代码和数据集可在以下查阅: https://giuth17/Vcomky。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
CVPR 2019视频描述(video caption)相关论文总结
极市平台
8+阅读 · 2019年10月16日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
简评 | Video Action Recognition 的近期进展
极市平台
20+阅读 · 2019年4月21日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
3+阅读 · 2021年10月14日
Arxiv
0+阅读 · 2021年10月13日
Equalization Loss for Long-Tailed Object Recognition
Arxiv
5+阅读 · 2020年4月14日
SlowFast Networks for Video Recognition
Arxiv
19+阅读 · 2018年12月10日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
相关资讯
CVPR 2019视频描述(video caption)相关论文总结
极市平台
8+阅读 · 2019年10月16日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
简评 | Video Action Recognition 的近期进展
极市平台
20+阅读 · 2019年4月21日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员