This study presents a scalable Bayesian estimation algorithm for sparse estimation in exploratory item factor analysis based on a classical Bayesian estimation method, namely Bayesian joint modal estimation (BJME). BJME estimates the model parameters and factor scores that maximize the complete-data joint posterior density. Simulation studies show that the proposed algorithm has high computational efficiency and accuracy in variable selection over latent factors and the recovery of the model parameters. Moreover, we conducted a real data analysis using large-scale data from a psychological assessment that targeted the Big Five personality traits. This result indicates that the proposed algorithm achieves computationally efficient parameter estimation and extracts the interpretable factor loading structure.
翻译:暂无翻译