Optimization of problems with high computational power demands is a challenging task. A probabilistic approach to such optimization called Bayesian optimization lowers performance demands by solving mathematically simpler model of the problem. Selected approach, Gaussian Process, models problem using a mixture of Gaussian functions. This paper presents specific modifications of Gaussian Process optimization components from available scientific libraries. Presented modifications were submitted to BlackBox 2020 challenge, where it outperformed some conventionally available optimization libraries.
翻译:优化高计算功率需求的问题是一项艰巨的任务。 所谓巴伊西亚优化的概率化方法通过解决数学上更简单的问题模型来降低绩效需求。 选定的方法, 高西亚进程, 使用高斯函数混合模型问题。 本文介绍了现有科学图书馆对高西亚流程优化组件的具体修改。 向BlackBox 2020挑战提交了修改意见, 其表现超过了一些常规的优化图书馆。