As recently pointed out in the field of Global Sensitivity Analysis (GSA) of computer simulations, the use of replicated Latin Hypercube Designs (rLHDs) is a cost-saving alternative to regular Monte Carlo sampling to estimate first-order Sobol' indices. Indeed, two rLHDs are sufficient to compute the whole set of those indices regardless of the number of input variables. This relies on a permutation trick which, however, only works within the class of estimators called Oracle 2. In the present paper, we show that rLHDs are still beneficial to another class of estimators, called Oracle 1, which often outperforms Oracle 2 for estimating small and moderate indices. Even though unlike Oracle 2 the computation cost of Oracle 1 depends on the input dimension, the permutation trick can be applied to construct an averaged (triple) Oracle 1 estimator whose great accuracy is presented on a numerical example. Thus, we promote an adaptive rLHDs-based Sobol' sensitivity analysis where the first stage is to compute the whole set of first-order indices by Oracle 2. If needed, the accuracy of small and moderate indices can then be reevaluated by the averaged Oracle 1 estimators. This strategy, cost-saving and guaranteeing the accuracy of estimates, is applied to a computer model from the nuclear field.


翻译:正如最近在计算机模拟全球敏感度分析(GSA)领域指出的,复制拉丁超立方体设计(rLHDs)是常规的蒙特卡洛(Monte Carlo)抽样评估一阶Sobol指数的一种节省成本的替代方法。事实上,两个RLHD(rLHD)足以计算这些指数的全套,而不管输入变量的数量如何。这依赖于一种调和技巧,但这种技巧只能在称为Oracle(Oracle)的占卜者类别中起作用。在本文中,我们显示RLHD(rLHD)仍然有益于另一类占卜者,称为Oracle 1的占卜者2,通常高于Oracle 2,用于估算中小指数。尽管与Oracle 2不同的是, Oracle 1 的计算成本成本计算成本取决于输入层面,但可以用来构建一个平均(triple) Oracle 1 估测算器,其高度精确性以模型为例。因此,我们提倡以适应性RLHDS-Sobol的敏感度分析,第一个阶段是用来将第一个中位的中位指数的缩应用到Oracrecreal 战略。

0
下载
关闭预览

相关内容

专知会员服务
21+阅读 · 2021年3月9日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年5月6日
Arxiv
0+阅读 · 2021年5月5日
Arxiv
0+阅读 · 2021年5月5日
VIP会员
相关VIP内容
专知会员服务
21+阅读 · 2021年3月9日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员