The Voronoi Density Estimator (VDE) is an established density estimation technique that adapts to the local geometry of data. However, its applicability has been so far limited to problems in two and three dimensions. This is because Voronoi cells rapidly increase in complexity as dimensions grow, making the necessary explicit computations infeasible. We define a variant of the VDE deemed Compactified Voronoi Density Estimator (CVDE), suitable for higher dimensions. We propose computationally efficient algorithms for numerical approximation of the CVDE and formally prove convergence of the estimated density to the original one. We implement and empirically validate the CVDE through a comparison with the Kernel Density Estimator (KDE). Our results indicate that the CVDE outperforms the KDE on sound and image data.
翻译:Voronoi Density Estimator(VDE)是一种成熟的密度估计技术,适应了数据的本地几何学,但迄今为止,其适用性仅限于两个和三个层面的问题。这是因为Voronoi细胞的复杂度随着维度增长而迅速增加,使得必要的明确计算不可行。我们定义了VDE中被认为“Flaticated Vorono Edensity Estimator”(CVDE)的变种,该变种适合更高维度。我们提出了CVDE数字近似的计算效率算法,并正式证明估计密度与原密度的趋同。我们通过与Kernel Density Estimator(KDE)的比较来实施并用经验验证CVDE。我们的结果表明,CVDE在声音和图像数据上比了 KDE。