It is challenging to deal with censored data, where we only have access to the incomplete information of survival time instead of its exact value. Fortunately, under linear predictor assumption, people can obtain guaranteed coverage for the confidence band of survival time using methods like Cox Regression. However, when relaxing the linear assumption with neural networks (e.g., Cox-MLP \citep{katzman2018deepsurv,kvamme2019time}), we lose the guaranteed coverage. To recover the guaranteed coverage without linear assumption, we propose two algorithms based on conformal inference. In the first algorithm \emph{WCCI}, we revisit weighted conformal inference and introduce a new non-conformity score based on partial likelihood. We then propose a two-stage algorithm \emph{T-SCI}, where we run WCCI in the first stage and apply quantile conformal inference to calibrate the results in the second stage. Theoretical analysis shows that T-SCI returns guaranteed coverage under milder assumptions than WCCI. We conduct extensive experiments on synthetic data and real data using different methods, which validate our analysis.
翻译:处理被审查的数据具有挑战性,我们只能获得关于生存时间的不完整信息,而不是其准确价值。幸运的是,根据线性预测假设,人们可以利用Cox Regrestition等方法获得生存时间信任度的保证覆盖。然而,在放松神经网络线性假设(例如Cox-MLP \citep{katzman2018deepsurv,kvamme2019time))时,我们失去了保障覆盖。为了在没有线性假设的情况下恢复有保障的覆盖,我们根据符合的推断提出了两种算法。在第一个算法 \ emph{WCCI}中,我们重新审视了加权一致性推断,并引入了基于部分可能性的新的不兼容性分数。我们随后提出了两阶段算法 \ emph{T- SCI}, 我们在那里运行了WCCI, 并在第二阶段应用量性一致推论来校准结果。理论分析显示, T-SCI 在比WCCI更温的假设下返回了有保障的覆盖范围。我们用不同的合成数据和数据分析方法进行了广泛的实验。