This study analyzed the performance of different machine learning methods for winter wheat yield prediction using extensive datasets of weather, soil, and crop phenology. To address the seasonality, weekly features were used that explicitly take soil moisture conditions and meteorological events into account. Our results indicated that nonlinear models such as deep neural networks (DNN) and XGboost are more effective in finding the functional relationship between the crop yield and input data compared to linear models. The results also revealed that the deep neural networks often had a higher prediction accuracy than XGboost. One of the main limitations of machine learning models is their black box property. As a result, we moved beyond prediction and performed feature selection, as it provides key results towards explaining yield prediction (variable importance by time). The feature selection method estimated the individual effect of weather components, soil conditions, and phenology variables as well as the time that these variables become important. As such, our study indicates which variables have the most significant effect on winter wheat yield.


翻译:这项研究利用天气、土壤和作物动物学的广泛数据集分析了冬季小麦产量预测的不同机器学习方法的性能。为了解决季节性问题,使用了明确考虑到土壤湿度条件和气象事件的每周特征。我们的结果表明,深神经网络(DNN)和XGbousst等非线性模型在寻找作物产量和输入数据之间的功能关系方面比线性模型更为有效。结果还表明,深神经网络的预测准确性往往高于XGboost。机器学习模型的主要局限性之一是它们的黑盒属性。结果,我们超越了预测,进行了特征选择,因为它为解释产量预测提供了关键结果(随着时间的推移具有不同的重要性 ) 。 特征选择方法估计了天气组成部分、土壤条件和植物变量的个别影响以及这些变量变得重要的时间。因此,我们的研究指出了哪些变量对冬季小麦产量具有最显著的影响。

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
【课程】纽约大学 DS-GA 1003 Machine Learning
专知会员服务
45+阅读 · 2019年10月29日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
18+阅读 · 2021年3月16日
Arxiv
18+阅读 · 2019年1月16日
Arxiv
4+阅读 · 2018年3月30日
Arxiv
3+阅读 · 2018年3月28日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员