2D image-based virtual try-on has attracted increased attention from the multimedia and computer vision communities. However, most of the existing image-based virtual try-on methods directly put both person and the in-shop clothing representations together, without considering the mutual correlation between them. What is more, the long-range information, which is crucial for generating globally consistent results, is also hard to be established via the regular convolution operation. To alleviate these two problems, in this paper we propose a novel two-stage Cloth Interactive Transformer (CIT) for virtual try-on. In the first stage, we design a CIT matching block, aiming to perform a learnable thin-plate spline transformation that can capture more reasonable long-range relation. As a result, the warped in-shop clothing looks more natural. In the second stage, we propose a novel CIT reasoning block for establishing the global mutual interactive dependence. Based on this mutual dependence, the significant region within the input data can be highlighted, and consequently, the try-on results can become more realistic. Extensive experiments on a public fashion dataset demonstrate that our CIT can achieve the new state-of-the-art virtual try-on performance both qualitatively and quantitatively. The source code and trained models are available at https://github.com/Amazingren/CIT.
翻译:以 2D 图像为基础的虚拟试镜已经吸引了多媒体和计算机视觉界的更多关注。然而,大多数现有的基于图像的虚拟试镜方法直接将人和在商店的衣着展示组合在一起,而没有考虑到两者的相互关系。此外,对于产生全球一致的结果至关重要的远程信息,也很难通过常规演进行动来建立。为了缓解这两个问题,我们在本文件中提议为虚拟试镜设计一个新的两阶段Cloth互动变换器(CIT)。在第一阶段,我们设计了一个CIT匹配块,目的是进行可以学习的薄盘样板样板样板样板转换,以捕捉到更合理的长距离关系。结果,在第二阶段,我们提出一个新的CIT推理块,以建立全球互动依赖关系。基于这种相互依存关系,可以突出输入数据中的重要区域,因此,试录结果可以变得更加现实。在公共时装数据集上进行的广泛实验表明,我们的CIT 能够实现新的州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州- 州-