Transformer is important for text modeling. However, it has difficulty in handling long documents due to the quadratic complexity with input text length. In order to handle this problem, we propose a hierarchical interactive Transformer (Hi-Transformer) for efficient and effective long document modeling. Hi-Transformer models documents in a hierarchical way, i.e., first learns sentence representations and then learns document representations. It can effectively reduce the complexity and meanwhile capture global document context in the modeling of each sentence. More specifically, we first use a sentence Transformer to learn the representations of each sentence. Then we use a document Transformer to model the global document context from these sentence representations. Next, we use another sentence Transformer to enhance sentence modeling using the global document context. Finally, we use hierarchical pooling method to obtain document embedding. Extensive experiments on three benchmark datasets validate the efficiency and effectiveness of Hi-Transformer in long document modeling.


翻译:变换器对于文本建模很重要。 但是, 它由于输入文本长度的二次复杂, 难以处理长文件。 为了解决这一问题, 我们建议使用一个等级互动变换器( Hi- Transfer) 来高效和高效的长文件建模。 高变换器文件以分级方式, 即先学习句子表达方式, 然后学习文件表达方式 。 它可以有效地降低每个句子建模的复杂程度, 同时捕捉全球文档背景 。 更具体地说, 我们首先使用一句变换器来学习每个句子的表述方式 。 然后我们用一个文档变换器来模拟这些句子的全文件背景 。 接下来, 我们用另一句变换器来利用全球文档背景加强句子建模 。 最后, 我们使用分级合并法来获取文件嵌套装。 在三个基准数据集上进行的广泛实验, 验证了长文档建模过程中的H- Transtrafer的效率和效力 。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
【ICLR 2019】双曲注意力网络,Hyperbolic  Attention Network
专知会员服务
82+阅读 · 2020年6月21日
Transformer文本分类代码
专知会员服务
116+阅读 · 2020年2月3日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
已删除
将门创投
6+阅读 · 2019年6月10日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
3+阅读 · 2019年8月19日
Arxiv
6+阅读 · 2019年7月11日
VIP会员
相关VIP内容
相关资讯
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
已删除
将门创投
6+阅读 · 2019年6月10日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员