Uncertainty Quantification (UQ) is a booming discipline for complex computational models based on the analysis of robustness, reliability and credibility. UQ analysis for nonlinear crash models with high dimensional outputs presents important challenges. In crashworthiness, nonlinear structural behaviours with multiple hidden modes require expensive models (18 hours for a single run). Surrogate models (metamodels) allow substituting the full order model, introducing a response surface for a reduced training set of numerical experiments. Moreover, uncertain input and large number of degrees of freedom result in high dimensional problems, which derives to a bottle neck that blocks the computational efficiency of the metamodels. Kernel Principal Component Analysis (kPCA) is a multidimensionality reduction technique for non-linear problems, with the advantage of capturing the most relevant information from the response and improving the efficiency of the metamodel. Aiming to compute the minimum number of samples with the full order model. The proposed methodology is tested with a practical industrial problem that arises from the automotive industry.
翻译:不确定量化(UQ)是复杂计算模型中基于强健性、可靠性和可信度分析的一种繁忙的学科。UQ对具有高维输出的非线性崩溃模型的分析提出了重大挑战。在崩溃性方面,具有多种隐蔽模式的非线性结构行为需要昂贵的模型(一次性运行18小时);代用模型(元模型)允许替换全顺序模型,引入一个对数量实验培训减少的成套培训进行响应的表面。此外,投入不确定和大量自由度导致高维度问题,而高维度问题则产生于阻挡元模型计算效率的瓶子颈部。核心主元组件分析(kPCA)是非线性问题的一种多维性减少技术,其优势在于从响应中获取最相关的信息和提高元模型的效率。目的是用全序模型计算最低样本数量。拟议方法的测试是汽车工业产生的一个实际工业问题。