The Heisenberg representation of quantum operators provides a powerful technique for reasoning about quantum circuits, albeit those restricted to the common (non-universal) Clifford set $H$, $S$ and $CNOT$. The Gottesman-Knill theorem showed that we can use this representation to efficiently simulate Clifford circuits. We show that Gottesman's semantics for quantum programs can be treated as a type system, allowing us to efficiently characterize a common subset of quantum programs. We apply this primarily towards tracking entanglement in programs, showing how superdense coding and GHZ circuits entangle and disentangle qubits and how to safely dispose of ancillae. We demonstrate the efficiency of our typechecking algorithm both for simple deductions and those involving entanglement and measurement.
翻译:量子操作员的海森堡表示法为量子电路的推理提供了强有力的技巧,尽管这些推理仅限于普通(非普遍)克里夫德设定的(H)美元、S美元和CNO$。高特斯曼-科尔理论显示,我们可以利用这个推理来高效模拟克里福德电路。我们表明,高特斯曼用于量子程序的语义可以被当作一种类型系统,从而使我们能够有效地描述量子程序的一个共同子集。我们主要将这一方法应用于跟踪程序中的纠结,显示超常编码和GHZ电路如何串联和分解的 ⁇,以及如何安全地处理蚂蚁。我们展示了我们用于简单推算以及涉及缠绕和测量的排解算法的效率。