The Heisenberg representation of quantum operators provides a powerful technique for reasoning about quantum circuits, albeit those restricted to the common (non-universal) Clifford set $H$, $S$ and $CNOT$. The Gottesman-Knill theorem showed that we can use this representation to efficiently simulate Clifford circuits. We show that Gottesman's semantics for quantum programs can be treated as a type system, allowing us to efficiently characterize a common subset of quantum programs. We apply this primarily towards tracking entanglement in programs, showing how superdense coding and GHZ circuits entangle and disentangle qubits and how to safely dispose of ancillae. We demonstrate the efficiency of our typechecking algorithm both for simple deductions and those involving entanglement and measurement.


翻译:量子操作员的海森堡表示法为量子电路的推理提供了强有力的技巧,尽管这些推理仅限于普通(非普遍)克里夫德设定的(H)美元、S美元和CNO$。高特斯曼-科尔理论显示,我们可以利用这个推理来高效模拟克里福德电路。我们表明,高特斯曼用于量子程序的语义可以被当作一种类型系统,从而使我们能够有效地描述量子程序的一个共同子集。我们主要将这一方法应用于跟踪程序中的纠结,显示超常编码和GHZ电路如何串联和分解的 ⁇,以及如何安全地处理蚂蚁。我们展示了我们用于简单推算以及涉及缠绕和测量的排解算法的效率。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年9月7日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
已删除
将门创投
7+阅读 · 2019年10月15日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
Arxiv
0+阅读 · 2021年3月17日
Arxiv
0+阅读 · 2021年3月16日
Arxiv
0+阅读 · 2021年3月16日
Arxiv
0+阅读 · 2021年3月16日
Arxiv
0+阅读 · 2021年3月14日
Arxiv
0+阅读 · 2021年3月14日
VIP会员
相关资讯
已删除
将门创投
7+阅读 · 2019年10月15日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员