In teacher-student framework, a more experienced agent (teacher) helps accelerate the learning of another agent (student) by suggesting actions to take in certain states. In cooperative multiagent reinforcement learning (MARL), where agents need to cooperate with one another, a student may fail to cooperate well with others even by following the teachers' suggested actions, as the polices of all agents are ever changing before convergence. When the number of times that agents communicate with one another is limited (i.e., there is budget constraint), the advising strategy that uses actions as advices may not be good enough. We propose a partaker-sharer advising framework (PSAF) for cooperative MARL agents learning with budget constraint. In PSAF, each Q-learner can decide when to ask for Q-values and share its Q-values. We perform experiments in three typical multiagent learning problems. Evaluation results show that our approach PSAF outperforms existing advising methods under both unlimited and limited budget, and we give an analysis of the impact of advising actions and sharing Q-values on agents' learning.


翻译:在教师-学生框架内,经验更丰富的代理(教师)通过建议在某些州采取行动,帮助加速另一个代理(学生)的学习。在合作性多试剂强化学习(MARL)中,如果代理人需要相互合作,那么学生可能甚至没有与其他人进行良好的合作,即使按照教师建议的行动,因为所有代理人的政策在趋同之前就一直在发生变化。当代理人相互沟通的次数有限(即存在预算限制)时,使用行动作为建议的建议战略可能不够好。我们建议为合作性多试剂强化学习(MARL)建议一个partaker-Sharer咨询框架(PSAF),在预算限制下,我们分析建议性行动和分享Q值对代理人学习的影响。在PSAF中,每个Qlearner可以决定何时要求Q值并分享Q值。我们在三个典型的多试剂学习问题中进行实验。评价结果显示,我们的PSAF方法超越了预算限制和有限的现有咨询方法,我们分析建议性行动和分享Q值对代理人学习的影响。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
3+阅读 · 2018年10月5日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
Arxiv
11+阅读 · 2018年4月25日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员