The approximate uniform sampling of graph realizations with a given degree sequence is an everyday task in several social science, computer science, engineering etc. projects. One approach is using Markov chains. The best available current result about the well-studied switch Markov chain is that it is rapidly mixing on P-stable degree sequences (see DOI:10.1016/j.ejc.2021.103421). The switch Markov chain does not change any degree sequence. However, there are cases where degree intervals are specified rather than a single degree sequence. (A natural scenario where this problem arises is in hypothesis testing on social networks that are only partially observed.) Rechner, Strowick, and M\"uller-Hannemann introduced in 2018 the notion of degree interval Markov chain which uses three (separately well-studied) local operations (switch, hinge-flip and toggle), and employing on degree sequence realizations where any two sequences under scrutiny have very small coordinate-wise distance. Recently Amanatidis and Kleer published a beautiful paper (arXiv:2110.09068), showing that the degree interval Markov chain is rapidly mixing if the sequences are coming from a system of very thin intervals which are centered not far from a regular degree sequence. In this paper we extend substantially their result, showing that the degree interval Markov chain is rapidly mixing if the intervals are centred at P-stable degree sequences.
翻译:对具有一定度序列的图形实现情况进行大致统一抽样,这在几个社会科学、计算机科学、工程等项目中是一项日常任务。 一种方法是使用Markov 链条。 得到良好研究的Markov 链条的最佳现有结果是,它在P- 稳定度序列上迅速混合(见DOI: 10.1016/j. ejc.2021.103421); Markov 链条没有改变任何程度序列。 但是, 在有些情况下, 度间距是指定的, 而不是一个单一程度序列。 ( 出现这一问题的自然情景是在仅部分观测到的社会网络的假设测试中产生的。 ) Rechner、 Strowick 和 M\\\"uller-Hanenmann 在2018年引入了马尔科夫 链的度间距概念, 该概念使用三种( 分层精密) 本地操作( 开关、 开关、 开关和格格勒), 并使用程度序列实现。 在任何两个受审查的序列都有非常小的协调距离的情况下, 。 最近的 Amanattidddddddddis 发表了一张美丽的论文 (arxxiv) 。 其中, roxlexlex rox rox rox roclex roclex rolex rox der rox rox rox rox 。