This study investigates the robustness of image classifiers to text-guided corruptions. We utilize diffusion models to edit images to different domains. Unlike other works that use synthetic or hand-picked data for benchmarking, we use diffusion models as they are generative models capable of learning to edit images while preserving their semantic content. Thus, the corruptions will be more realistic and the comparison will be more informative. Also, there is no need for manual labeling and we can create large-scale benchmarks with less effort. We define a prompt hierarchy based on the original ImageNet hierarchy to apply edits in different domains. As well as introducing a new benchmark we try to investigate the robustness of different vision models. The results of this study demonstrate that the performance of image classifiers decreases significantly in different language-based corruptions and edit domains. We also observe that convolutional models are more robust than transformer architectures. Additionally, we see that common data augmentation techniques can improve the performance on both the original data and the edited images. The findings of this research can help improve the design of image classifiers and contribute to the development of more robust machine learning systems. The code for generating the benchmark will be made available online upon publication.
翻译:本研究探讨了图像分类器对文本指导下的对抗攻击的鲁棒性。我们使用扩散模型编辑图像到不同的领域。与其他使用合成或手工选择数据进行基准测试的工作不同,我们使用扩散模型作为它们是生成模型,能够学习编辑图像同时保留其语义内容。因此,这些对抗攻击将更加真实,比较结果将更加明确。此外,无需手动标注,我们可以用更少的努力创建大规模的基准测试。我们基于原始ImageNet层次结构定义了提示层次结构,以在不同领域应用编辑。除了引入新的基准测试外,我们还试图研究不同视觉模型的鲁棒性。本研究的结果表明,图像分类器在不同的基于语言的攻击和编辑领域中的性能显著降低。我们还观察到,卷积模型比Transformer架构更为鲁棒。此外,我们发现常见的数据增强技术可以提高原始数据和编辑图像的性能。本研究的发现有助于改善图像分类器的设计,并有助于开发更为鲁棒的机器学习系统。在发表后,生成基准测试的代码将在线上提供。