Wide-angle portraits often enjoy expanded views. However, they contain perspective distortions, especially noticeable when capturing group portrait photos, where the background is skewed and faces are stretched. This paper introduces the first deep learning based approach to remove such artifacts from freely-shot photos. Specifically, given a wide-angle portrait as input, we build a cascaded network consisting of a LineNet, a ShapeNet, and a transition module (TM), which corrects perspective distortions on the background, adapts to the stereographic projection on facial regions, and achieves smooth transitions between these two projections, accordingly. To train our network, we build the first perspective portrait dataset with a large diversity in identities, scenes and camera modules. For the quantitative evaluation, we introduce two novel metrics, line consistency and face congruence. Compared to the previous state-of-the-art approach, our method does not require camera distortion parameters. We demonstrate that our approach significantly outperforms the previous state-of-the-art approach both qualitatively and quantitatively.
翻译:宽角肖像往往会得到扩大的视角。 但是, 它们包含观点扭曲, 特别是当捕捉群组肖像照片时, 其背景是偏斜的, 面部是被拉长的。 本文介绍了第一个从自由拍摄的照片中移除这些文物的深层次学习方法。 具体地说, 以宽角肖像作为输入, 我们建立了一个由线网、 形状网和过渡模块组成的连锁网络, 来纠正背景的视角扭曲, 适应面部区域的图案投影, 并实现这两个图案之间的平稳过渡。 因此, 为了培训我们的网络, 我们建立了第一个在身份、 场景和相机模块方面差异很大的视觉肖像数据集。 为了量化评估, 我们引入了两个新的指标、 线条一致性和面孔一致性。 与先前的状态方法相比, 我们的方法不需要相机扭曲参数。 我们证明我们的方法在质量和数量上大大超越了先前的状态方法。