We present a new method, called MEsh TRansfOrmer (METRO), to reconstruct 3D human pose and mesh vertices from a single image. Our method uses a transformer encoder to jointly model vertex-vertex and vertex-joint interactions, and outputs 3D joint coordinates and mesh vertices simultaneously. Compared to existing techniques that regress pose and shape parameters, METRO does not rely on any parametric mesh models like SMPL, thus it can be easily extended to other objects such as hands. We further relax the mesh topology and allow the transformer self-attention mechanism to freely attend between any two vertices, making it possible to learn non-local relationships among mesh vertices and joints. With the proposed masked vertex modeling, our method is more robust and effective in handling challenging situations like partial occlusions. METRO generates new state-of-the-art results for human mesh reconstruction on the public Human3.6M and 3DPW datasets. Moreover, we demonstrate the generalizability of METRO to 3D hand reconstruction in the wild, outperforming existing state-of-the-art methods on FreiHAND dataset. Code and pre-trained models are available at https://github.com/microsoft/MeshTransformer.


翻译:我们提出一种新的方法,称为MEsh TRansfOrmer(METERO),从一个图像中重建3D人姿势和网状螺旋。我们的方法使用变压器编码器来同时模拟顶顶顶和顶顶端联合互动,以及输出 3D 联合坐标和网形脊椎。与后退和形状参数的现有技术相比,MEDRO并不依赖SMPL 等任何参数网状模型,因此可以很容易地将其扩展至其他物体,例如手。我们进一步放松网状表层学,允许变压器自控机制在任何两个顶部之间自由运行,从而有可能在网状顶和顶端联合之间学习非本地关系。随着拟议的遮蔽的顶部模型,我们的方法在应对像部分封闭等具有挑战性的情况方面更加有力和有效。MEDRO为公众人3.6M 和 3DPW 数据集的人类网状元重建创造新的状态/艺术成果。此外,我们展示了METAF-S-SOFI-SOFI-SOFADFADAND AND AND AND Redustrual Redual Redustrations

1
下载
关闭预览

相关内容

专知会员服务
29+阅读 · 2021年7月30日
专知会员服务
15+阅读 · 2021年5月13日
【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
21+阅读 · 2021年4月20日
专知会员服务
60+阅读 · 2020年3月19日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
“CVPR 2020 接受论文列表 1470篇论文都在这了
三维重建 3D reconstruction 有哪些实用算法?
极市平台
13+阅读 · 2020年2月23日
CVPR 2019 | 34篇 CVPR 2019 论文实现代码
AI科技评论
21+阅读 · 2019年6月23日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉领域顶会CVPR 2018 接受论文列表
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2020年11月28日
Local Relation Networks for Image Recognition
Arxiv
4+阅读 · 2019年4月25日
Arxiv
3+阅读 · 2018年6月19日
VIP会员
相关VIP内容
专知会员服务
29+阅读 · 2021年7月30日
专知会员服务
15+阅读 · 2021年5月13日
【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
21+阅读 · 2021年4月20日
专知会员服务
60+阅读 · 2020年3月19日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
“CVPR 2020 接受论文列表 1470篇论文都在这了
三维重建 3D reconstruction 有哪些实用算法?
极市平台
13+阅读 · 2020年2月23日
CVPR 2019 | 34篇 CVPR 2019 论文实现代码
AI科技评论
21+阅读 · 2019年6月23日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉领域顶会CVPR 2018 接受论文列表
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员