Graphs are an essential part of many machine learning problems such as analysis of parse trees, social networks, knowledge graphs, transportation systems, and molecular structures. Applying machine learning in these areas typically involves learning the graph structure and the relationship between the nodes of the graph. However, learning the graph structure is often complex, particularly when the graph is cyclic, and the transitions from one node to another are conditioned such as graphs used to represent a finite state machine. To solve this problem, we propose to extend the memory based Neural Turing Machine (NTM) with two novel additions. We allow for transitions between nodes to be influenced by information received from external environments, and we let the NTM learn the context of those transitions. We refer to this extension as the Conditional Neural Turing Machine (CNTM). We show that the CNTM can infer conditional transition graphs by empirically verifiying the model on two data sets: a large set of randomly generated graphs, and a graph modeling the information retrieval process during certain crisis situations. The results show that the CNTM is able to reproduce the paths inside the graph with accuracy ranging from 82,12% for 10 nodes graphs to 65,25% for 100 nodes graphs.


翻译:图表是许多机器学习问题的重要部分, 比如分析剖析树、 社交网络、 知识图表、 运输系统和分子结构。 在这些地区应用机器学习通常需要学习图形结构以及图形节点之间的关系。 但是, 学习图形结构往往很复杂, 特别是当图形是循环的, 从一个节点向另一个节点的过渡是有条件的, 例如用于代表一个有限状态机器的图表。 为了解决这个问题, 我们提议扩展基于内存的神经图象机( NTM), 并增加两个新的内容。 我们允许节点之间的转换受到外部环境信息的影响, 我们让 NTM 学习这些转变的背景。 我们把这个扩展称为条件神经图解机器( CNTM ) 。 我们显示, CNTM 可以通过实验性地验证两个数据集的模型来推断有条件的过渡图。 一个大系列随机生成的图, 以及一个图表模型模拟某些危机局势中的信息检索过程。 结果显示, CNTM 能够复制这些节点的图中路径为 82%, 无法复制图内图的精确度为 。

0
下载
关闭预览

相关内容

【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
115+阅读 · 2019年12月24日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
已删除
Arxiv
32+阅读 · 2020年3月23日
Arxiv
12+阅读 · 2018年9月15日
Arxiv
3+阅读 · 2018年3月28日
Arxiv
6+阅读 · 2018年2月26日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员