This work theoretically studies the problem of estimating a structured high-dimensional signal $x_0 \in \mathbb{R}^n$ from noisy $1$-bit Gaussian measurements. Our recovery approach is based on a simple convex program which uses the hinge loss function as data fidelity term. While such a risk minimization strategy is very natural to learn binary output models, such as in classification, its capacity to estimate a specific signal vector is largely unexplored. A major difficulty is that the hinge loss is just piecewise linear, so that its "curvature energy" is concentrated in a single point. This is substantially different from other popular loss functions considered in signal estimation, e.g., the square or logistic loss, which are at least locally strongly convex. It is therefore somewhat unexpected that we can still prove very similar types of recovery guarantees for the hinge loss estimator, even in the presence of strong noise. More specifically, our non-asymptotic error bounds show that stable and robust reconstruction of $x_0$ can be achieved with the optimal oversampling rate $O(m^{-1/2})$ in terms of the number of measurements $m$. Moreover, we permit a wide class of structural assumptions on the ground truth signal, in the sense that $x_0$ can belong to an arbitrary bounded convex set $K \subset \mathbb{R}^n$. The proofs of our main results rely on some recent advances in statistical learning theory due to Mendelson. In particular, we invoke an adapted version of Mendelson's small ball method that allows us to establish a quadratic lower bound on the error of the first order Taylor approximation of the empirical hinge loss function.


翻译:这项工作从理论上研究估算一个结构化高维信号$x_0=in \mathbb{R ⁇ }R ⁇ n$的问题。 我们的回收方法基于简单的 convex 程序, 该程序使用断层损失函数作为数据忠实性术语。 虽然这种风险最小化战略非常自然地可以学习二进制输出模型, 例如分类, 其估算特定信号矢量的能力基本上没有被探索。 一个主要困难在于, 断层损失只是片断线性, 因此它的“ 精度能量” 集中在一个单一点。 这与在信号估算中考虑的其他流行损失函数有很大不同, 例如, 平方或后勤损失, 至少在本地非常强烈的 convex 术语中使用断层损失函数。 因此, 有一点有点出乎意料的是, 我们仍然可以证明, 即使存在强烈的噪音, 更具体的非随机误差, 我们的美元=0的最小值重建可以实现。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Deep Learning for Energy Markets
Arxiv
10+阅读 · 2019年4月10日
A General and Adaptive Robust Loss Function
Arxiv
8+阅读 · 2018年11月5日
Arxiv
4+阅读 · 2018年3月14日
Arxiv
5+阅读 · 2018年1月30日
Arxiv
7+阅读 · 2018年1月21日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员