We propose a new asymptotic test to assess the stationarity of a time series' mean that is applicable in the presence of both heteroscedasticity and short-range dependence. Our test statistic is composed of Gini's mean difference of local sample means. To analyse its asymptotic behaviour, we develop new limit theory for U-statistics of strongly mixing triangular arrays under non-stationarity. Most importantly, we show asymptotic normality of the test statistic under the hypothesis of a constant mean and prove the test's consistency against a very general class of alternatives, including both smooth and abrupt changes in the mean. We propose estimators for all parameters involved, including an adapted subsampling estimator for the long run variance, and show their consistency. Our procedure is practically evaluated in an extensive simulation study and in two data examples.
翻译:我们建议一种新的无症状测试,以评估时间序列值的固定性,该数值在存在异性性和短距离依赖性的情况下都适用。 我们的测试统计由基尼的局部抽样手段的平均值差异组成。 为了分析其无症状行为, 我们为非静性下强混合三角阵列的U-统计学开发了新的限制理论。 最重要的是, 我们以恒定平均值为假设,显示测试统计的无症状性正常性, 并证明测试与非常普通的替代物的一致性, 包括均匀和突变。 我们建议了所有相关参数的估测值, 包括一个经过调整的子抽样测算器, 用于长期差异, 并显示其一致性。 我们的程序在广泛的模拟研究和两个数据实例中得到了实际评估。