The Coalition Formation with Spatial and Temporal constraints Problem (CFSTP) is a multi-agent task allocation problem where the agents are cooperative and few, the tasks are many, spatially distributed, with deadlines and workloads, and the objective is to find a schedule that maximises the number of completed tasks. The current state-of-the-art CFSTP solver, the Coalition Formation with Look-Ahead (CFLA) algorithm, has two main limitations. First, its time complexity is quadratic with the number of tasks and exponential with the number of agents, which makes it not efficient. Second, its look-ahead technique is not effective in real-world scenarios, such as open multi-agent systems, where new tasks can appear at any time. Motivated by this, we propose an extension of CFLA, which we call Coalition Formation with Improved Look-Ahead (CFLA+). Since CFLA+ inherits the limitations of CFLA, we also develop a novel algorithm to solve the CFSTP, the first to be both anytime and efficient, which we call Cluster-based Coalition Formation (CCF). We empirically show that, in settings where the look-ahead technique is highly effective, CCF completes up to 20% (resp. 10%) more tasks than CFLA (resp. CFLA+) while being up to four orders of magnitude faster. Our results affirm CCF as the new state-of-the-art CFSTP solver.


翻译:与空间和时空制约结盟问题(CFSTP)是一个多试剂任务分配问题,其中代理商是合作者和少数,任务是众多的、空间分布的、有最后期限和工作量的任务,目标是找到一个能够最大限度地增加已完成任务数量的进度表。目前最先进的CFSTP解决器,即与Look-Ahead(CFLA+)结合算法(CFLA+),有两个主要局限性。首先,它的时间复杂性随着任务数量之多而四分五裂,与代理商数目之多而成,使得其效率低下。第二,其外观技术在现实世界情景中是无效的,例如开放多试剂系统,可以随时出现新的任务。为此,我们提议扩展CFLA,我们称之为SLAFA和LA头(CLA+)联合组建(CFA+)的联盟形式。由于CFLA+继承了CA的局限性,我们还开发了一种新型算法,以解决CFSTP,第一个是时间和高效的,我们称之为基于C-AFLA的升级的系统,而我们的经验显示C的CA的10级(CA是高度完整的技术)。

0
下载
关闭预览

相关内容

【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
152+阅读 · 2020年5月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
VIP会员
相关VIP内容
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
152+阅读 · 2020年5月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Top
微信扫码咨询专知VIP会员