We consider minimal-perimeter lattice animals, providing a set of conditions which are sufficient for a lattice to have the property that inflating all minimal-perimeter animals of a certain size yields (without repetitions) all minimal-perimeter animals of a new, larger size. We demonstrate this result on the two-dimensional square and hexagonal lattices. In addition, we characterize the sizes of minimal-perimeter animals on these lattices that are not created by inflating members of another set of minimal-perimeter animals.
翻译:我们考虑的是最小半径的顶层动物,提供一套条件,足以使顶层动物拥有一种特性,使某一尺寸(不重复)所有最小的顶层动物产生(不重复)所有新的更大尺寸的最低限度的顶层动物。我们用两维正方形和六角顶层来证明这一结果。此外,我们对这些顶层动物的尺寸进行定性,这些顶层动物不是由另一组最小底层动物的顶部动物的顶部成员膨胀造成的。