The defocus deblurring raised from the finite aperture size and exposure time is an essential problem in the computational photography. It is very challenging because the blur kernel is spatially varying and difficult to estimate by traditional methods. Due to its great breakthrough in low-level tasks, convolutional neural networks (CNNs) have been introduced to the defocus deblurring problem and achieved significant progress. However, they apply the same kernel for different regions of the defocus blurred images, thus it is difficult to handle these nonuniform blurred images. To this end, this study designs a novel blur-aware multi-branch network (BaMBNet), in which different regions (with different blur amounts) should be treated differentially. In particular, we estimate the blur amounts of different regions by the internal geometric constraint of the DP data, which measures the defocus disparity between the left and right views. Based on the assumption that different image regions with different blur amounts have different deblurring difficulties, we leverage different networks with different capacities (\emph{i.e.} parameters) to process different image regions. Moreover, we introduce a meta-learning defocus mask generation algorithm to assign each pixel to a proper branch. In this way, we can expect to well maintain the information of the clear regions while recovering the missing details of the blurred regions. Both quantitative and qualitative experiments demonstrate that our BaMBNet outperforms the state-of-the-art methods. Source code will be available at https://github.com/junjun-jiang/BaMBNet.


翻译:在计算摄影中,从有限孔径大小和暴露时间中产生的偏差分流是一个重要的问题。 它非常具有挑战性,因为模糊的内核在空间上差异很大,难以用传统方法估计。 特别是,由于在低层次任务中的巨大突破, 向分层分流问题引入了革命性神经网络(CNNs), 并取得了显著的进展。 但是, 在不同区域, 偏差模糊的图像也采用了同样的内核, 因此很难处理这些非统一模糊的图像。 为此, 本研究设计了一个全新的模糊的多分支网络(BAMBNet), 其中不同区域(模糊程度不同)应当区别对待。 特别是, 我们通过DP数据的内部几何限制来估计不同区域的模糊数量, 以测量左面和右面观点之间的偏差。 基于不同图像区域具有不同模糊度的困难, 我们利用不同能力(\emph{i.e.}参数的不同网络, 设计了一个新的模糊的多分支网络网络(BAMBETNet) 网络(B) 网络网络网络, 网络网络网络网络网络网络网络网络网络网络, 其内的不同区域(模糊程度不同), 不同,不同,不同区域(模糊程度) 的网络内积数值) 的网络网络网内, 的网络内网络网络网内, 的网络网内网络网内网络网内网络网内网络网内网络内网络内网络内网络内网络内网络内, 的网络内网络内网络内网络内网络内, 的网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络内网络

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
109+阅读 · 2020年3月12日
【NeurIPS2019】图变换网络:Graph Transformer Network
专知会员服务
110+阅读 · 2019年11月25日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
已删除
将门创投
8+阅读 · 2019年7月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Few Shot Learning with Simplex
Arxiv
5+阅读 · 2018年7月27日
VIP会员
相关资讯
已删除
将门创投
8+阅读 · 2019年7月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Top
微信扫码咨询专知VIP会员