We construct conforming finite elements for the spaces $H(\text{sym}\,\text{Curl})$ and $H(\text{dev}\,\text{sym}\,\text{Curl})$. Those are spaces of matrix-valued functions with symmetric or deviatoric-symmetric $\text{Curl}$ in a Lebesgue space, and they appear in various models of nonstandard solid mechanics. The finite elements are not $H(\text{Curl})$-conforming. We show the construction, prove conformity and unisolvence, and point out optimal approximation error bounds.
翻译:我们为 $H(\ text{sym},\ text{Curl}) $H(\ text{dev}) $和$H(\ text{sym},\ text{sym},\ text{Curl}) $(美元) 构建符合一定的元素。这些空间是列比斯格空间中具有对称或偏差对称的 $\ text{Curl} $( text{sym{Curl} $) 和 $H(\ text{dev{dev},\ text{sym{sym}) $($H) 和$H(\\\ text{sym},\ text{\ text{\\\ curl} $($) $($) 。 这些空间是矩阵价值的功能空间, 与对称或偏对称性对称性对称的 $( devatory- ${Curl) $( tal) $) $( text) $( $) $( $) 和显示最佳近似误差差误差误界限, 并显示最佳近差误界值。