A partial least squares regression is proposed for estimating the function-on-function regression model where a functional response and multiple functional predictors consist of random curves with quadratic and interaction effects. The direct estimation of a function-on-function regression model is usually an ill-posed problem. To overcome this difficulty, in practice, the functional data that belong to the infinite-dimensional space are generally projected into a finite-dimensional space of basis functions. The function-on-function regression model is converted to a multivariate regression model of the basis expansion coefficients. In the estimation phase of the proposed method, the functional variables are approximated by a finite-dimensional basis function expansion method. We show that the partial least squares regression constructed via a functional response, multiple functional predictors, and quadratic/interaction terms of the functional predictors is equivalent to the partial least squares regression constructed using basis expansions of functional variables. From the partial least squares regression of the basis expansions of functional variables, we provide an explicit formula for the partial least squares estimate of the coefficient function of the function-on-function regression model. Because the true forms of the models are generally unspecified, we propose a forward procedure for model selection. The finite sample performance of the proposed method is examined using several Monte Carlo experiments and two empirical data analyses, and the results were found to compare favorably with an existing method.
翻译:为估算功能在功能上回归模型,提议了部分最小方形回归模型,其中功能反应和多个功能预测器由带有二次和互动效应的随机曲线组成。对功能在功能上回归模型的直接估计通常是一个错误的问题。为克服这一困难,在实践中,属于无限空间的功能数据一般被预测成一个基础功能扩展的有限维维空间。功能在功能上回归模型被转换成基础扩展系数的多变量的多变量回归模型。在拟议方法的估计阶段,功能变量被一个有限基值功能扩展函数扩展方法的扩展方法所近似。我们表明,通过功能反应、多个功能预测器和功能预测器的四方形/互动术语构建的部分最小方形回归值,相当于使用功能变量扩展基础功能的最小维度空间。功能在功能上回归模型扩展系数的部分最小方形回归模型回归模型,我们为功能在功能在功能上回归模型上回归模型的部分最小方形函数估计值提供了明确的公式。由于功能在功能上回归模型中构建了部分的最小方形值,因此,我们建议采用两种真实的模型的模型选择形式为不固定的模型的模型,而采用一种前期分析方法。我们建议采用一种不固定的模型的模型的模型的模型,提出一种不固定的模型为一种不固定的模拟的模拟的模拟的模拟的模拟分析方法。