The lifetime behaviour of loans is notoriously difficult to model, which can compromise a bank's financial reserves against future losses, if modelled poorly. Therefore, we present a data-driven comparative study amongst three techniques in modelling a series of default risk estimates over the lifetime of each loan, i.e., its term-structure. The behaviour of loans can be described using a nonstationary and time-dependent semi-Markov model, though we model its elements using a multistate regression-based approach. As such, the transition probabilities are explicitly modelled as a function of a rich set of input variables, including macroeconomic and loan-level inputs. Our modelling techniques are deliberately chosen in ascending order of complexity: 1) a Markov chain; 2) beta regression; and 3) multinomial logistic regression. Using residential mortgage data, our results show that each successive model outperforms the previous, likely as a result of greater sophistication. This finding required devising a novel suite of simple model diagnostics, which can itself be reused in assessing sampling representativeness and the performance of other modelling techniques. These contributions surely advance the current practice within banking when conducting multistate modelling. Consequently, we believe that the estimation of loss reserves will be more timeous and accurate under IFRS 9.
翻译:暂无翻译