Researchers have proposed many methods for fair and robust machine learning, but comprehensive empirical evaluation of their subgroup robustness is lacking. In this work, we address this gap in the context of tabular data, where sensitive subgroups are clearly-defined, real-world fairness problems abound, and prior works often do not compare to state-of-the-art tree-based models as baselines. We conduct an empirical comparison of several previously-proposed methods for fair and robust learning alongside state-of-the-art tree-based methods and other baselines. Via experiments with more than $340{,}000$ model configurations on eight datasets, we show that tree-based methods have strong subgroup robustness, even when compared to robustness- and fairness-enhancing methods. Moreover, the best tree-based models tend to show good performance over a range of metrics, while robust or group-fair models can show brittleness, with significant performance differences across different metrics for a fixed model. We also demonstrate that tree-based models show less sensitivity to hyperparameter configurations, and are less costly to train. Our work suggests that tree-based ensemble models make an effective baseline for tabular data, and are a sensible default when subgroup robustness is desired. For associated code and detailed results, see https://github.com/jpgard/subgroup-robustness-grows-on-trees .


翻译:研究人员提出了许多公平和稳健的机器学习方法,但缺乏对其分组稳健性的全面实证评估。在这项工作中,我们从表格数据的角度解决了这一差距,在表格数据中,敏感分组是定义明确、真实世界公平的问题,而以前的工作往往不与以树为基础的最先进模型作为基线进行比较。我们用经验比较了先前提出的一些公平和稳健的学习方法,以及以树为基础的最先进方法和其他基线。在8个数据集上,以340{{{{3000美元为模型配置值的虚拟实验,我们表明,以树为基础的方法具有很强的分组强健。此外,以树为基础的最佳模型往往显示在一系列衡量标准上表现良好,而稳健或群体公平的模型则显示细小的弱点,而不同标准在固定模型上的表现差异很大。我们还表明,以树为基础的模型对超标度配置的敏感性较低,而且培训费用较低。我们的工作表明,以树为基础的方法具有很强的分组强健美的模型,当我们发现,以树为基础的精度模型和高劣的分组时,则会看到一个可靠的基准。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年1月21日
Arxiv
0+阅读 · 2023年1月20日
Arxiv
20+阅读 · 2021年9月22日
Arxiv
10+阅读 · 2021年2月18日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员